
Lingua Project
(4) Usability and visibility of items

(Sec. 5)

Andrzej Jacek Blikle

February 15th, 2025

The book "Denotational Engineering" may be downloaded from:

https://moznainaczej.com.pl/what-has-been-done/the-book

Feb 15th, 2025 A.Blikle - Denotational Engineering; part 4 (9) 2
A

A recapitulation of former lecture
Classes

cla : Class = Identifier x TypEnv x MetEnv x Objecton classes

tye : TypEnv = Identifier ⟹ Type | {Θ} type environments

mee : MetEnv = Identifier ⟹ Method method environments

met : Methods = ProSig | PrePro methods

Feb 15th, 2025 A.Blikle - Denotational Engineering; part 4 (9) 3
A

sta : State = Env x Store states

env : Env = ClaEnv x ProEnv x CovRel environments

cle : ClaEnv = Identifier ⟹ Class class environments

pre : ProEnv = ProInd ⟹ Procedure procedure environments

pri : ProInd = Identifier x Identifier procedure indicators

sto : Store = Objecton x Deposit x OriTag x SetFreTok x (Error | {‘OK’}) stores

cov : CovRel = Sub.((DatTyp x DatTyp) | (ObjTyp x ObjTyp)) covering relations

sft : SetFreTok = Set.Token sets of (free) tokens

Auxiliary function

get-tok : SetFreTok ⟼ Token x SetFreTok

get-tok.sft = (tok, sft − {tok})) such that tok : sft

An objecton my-obn is said to be well-formed in a state

 sta = ((cle, pre, cov), (obn, dep, ota, sft, err)), if:

 (1) for any attribute ide, if obn.ide = !, and dep.(obn.ide) = !, then:

 obn.ide VRA.cov dep.(obn.ide) — value by reference acceptability (see later),

(2) all inner objectons of obn are well-formed in sta.

A class (ide, tye, mee, obn) is said to be well-formed in a state, if

 (1) obn is well-formed in this state,

 (2) for every reference (tok, (typ, yok, ota)) in obn, its origin tag ota is either $ or ide

A recapitulation of former lecture
Stores and states

{$} | Identifier

wskaźnik pochodzenia

Feb 15th, 2025 A.Blikle - Denotational Engineering; part 4 (9) 4
A

A state sta = ((cle, pre, cov), (obn, dep, ota, sft, err)) said to be well-formed, if:

1. obn is well formed in sta,

2. external names of all classes declared in cle coincide with their internal names,

3. all surface and inner objects in obn are of types that are the names of classes

declared in cle,

4. all classes declared in cle are well-formed,

5. sft includes only such tokens that do not appear in references bound in dep,

6. every identifier appearing in a state, appears in it only once; e.g., if an identifier

is a variable, it can’t be at the same time a type constant or a class name.

WfState − the set of all well-formed states

Auxiliary functions:

error : Store ⟼ Error | {’OK’} error : State ⟼ Error | {’OK’}

is-error : Store ⟼ Boolean is-error : State ⟼ Boolean

(env, (obn, dep, ota, sft, err)) ◄ new-err = (env, (obn, dep, sft, ota, new-err))

(env, (obn, dep, ota, sft, err)) ◄ new-sft = (env, (obn, dep, new-sft, ota, err))

declared : Identifier x State ⟼ {tt, ff}

A recapitulation of former lecture
Well formed states

Two regimes of handling items
An informal overview

Feb 15th, 2025 A.Blikle - Denotational Engineering; part 4 (9) 5

A

The usability regime defines restrictions about the use of values

depending on their types and the yokes of references:

• when they are sent to value constructors (yokes not involved),

• when they are assigned to references (yokes involved),

• when they are sent as actual parameters to procedure calls

(yokes not involved).

The visibility regime defines restrictions about the use of values

depending on a programming context:

• procedure-dependent visibility: all items locally declared in

procedure bodies will be visible exclusively in these bodies,

• class-dependent visibility: selected items in classes may be

declared as private.

Covering relations between types
Usability regime

Feb 15th, 2025 A.Blikle - Denotational Engineering; part 4 (9) 6

A

• The types of values assigned to references must be acceptable by the

types of references, and the values themselves must satisfy the yokes of

references.

• The types „expected” by value constructors must accept the types of their

arguments.

cov : CovRel = Sub.((DatTyp x DatTyp) | (ObjTyp x ObjTyp))

E.g. (’integer’, ’small integer’) : cov

 (’employee’, ’accountant’) : cov

cov = Ld-cov | Pr-cov

Ld- language designer

Pr- programmer

TTA.cov ⊆ Type x Type type-by-type acceptability relation

 reflexivity + transitivity

VRA.cov ⊆ Reference x Value value-by-reference acceptability relation

 TTA.cov + yokes in references

Definitions in Sec. 5.4.2

Visibility of references
Basic rules

Feb 15th, 2025 A.Blikle - Denotational Engineering; part 4 (9) 7

A

1. A reference is visible in a state, if the origin tag of this reference

1. either is $ (global visibility), or

2. coincides with the origin tag of the state (local visibility).

2. A reference must be visible whenever we intend to:

1. get a value assigned to it in evaluating an expression,

2. change the value assigned to it in executing an assignment

instruction.

3. The origin tags of references and states are established when these

references and states are created, and later they can’t be changed.

4. Variables declared in states are always public.

5. Attributes declared in MyClass may be

1. public; reference origin tag is $,

2. private; reference origin tag is MyClass

6. Local states of procedures in MyClass have origin tag MyClass

7. All procedures are global

Feb 15th, 2025 A.Blikle - Denotational Engineering; part 4 (9) 8

A

Feb 15th, 2025 9A.Blikle - Denotational Engineering; part 4 (9)

Thank you for

your attention

	Slajd 1: Lingua Project (4) Usability and visibility of items (Sec. 5)
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5: Two regimes of handling items An informal overview
	Slajd 6: Covering relations between types Usability regime
	Slajd 7: Visibility of references Basic rules
	Slajd 8
	Slajd 9

